Thermodynamic stability of hydrogen clathrates.

نویسندگان

  • Serguei Patchkovskii
  • John S Tse
چکیده

The stability of the recently characterized type II hydrogen clathrate [Mao, W. L., Mao, H.-K., Goncharov, A. F., Struzhkin, V. V., Guo, Q., et al. (2002) Science 297, 2247-2249] with respect to hydrogen occupancy is examined with a statistical mechanical model in conjunction with first-principles quantum chemistry calculations. It is found that the stability of the clathrate is mainly caused by dispersive interactions between H2 molecules and the water forming the cage walls. Theoretical analysis shows that both individual hydrogen molecules and nH2 guest clusters undergo essentially free rotations inside the clathrate cages. Calculations at the experimental conditions--2,000 bar (1 bar = 100 kPa) and 250 K confirm multiple occupancy of the clathrate cages with average occupations of 2.00 and 3.96 H2 molecules per D-5(12) (small) and H-5(12)6(4) (large) cage, respectively. The H2-H2O interactions also are responsible for the experimentally observed softening of the H[bond]H stretching modes. The clathrate is found to be thermodynamically stable at 25 bar and 150 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo calculations of the free energy of binary sII hydrogen clathrate hydrates for identifying efficient promoter molecules.

The thermodynamics of binary sII hydrogen clathrates with secondary guest molecules is studied with Monte Carlo simulations. The small cages of the sII unit cell are occupied by one H(2) guest molecule. Different promoter molecules entrapped in the large cages are considered. Simulations are conducted at a pressure of 1000 atm in a temperature range of 233-293 K. To determine the stabilizing ef...

متن کامل

Methane clathrates in the solar system.

We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks ...

متن کامل

Hybrid Carbon-based Clathrates for Energy Storage

Hybrid carbon-silicon, carbon-nitrogen, and carbon-boron clathrates are new classes of Type I carbon-based clathrates that have been identified by first-principles computational methods by substituting atoms on the carbon clathrate framework with Si, N, and/or B atoms. The hybrid framework is further stabilized by embedding appropriate guest atoms within the cavities of the cage structure. Seri...

متن کامل

Thermodynamic study of an effective catalytic system, hydrogen peroxide and methyltrioxorhenium

The thermodynamic of the known and very effective catalytic system, hydrogen peroxide (H2O2) and methyltrioxorhenium (MTO) is studied in different solvents using UV-Visible spectroscopic method. The thermodynamic parameters (ΔG, ΔH and ΔS) for two equilibrium reactions, MTO + H2O2 ⇌ A + H2O and A + H2O2 ⇌ B.H2O (A, [MeRe(O)2(O2)]; B.H2O, [MeRe(OH2)(O)(O2)2]), are determined. The obtained free e...

متن کامل

Thermodynamic study of an effective catalytic system, hydrogen peroxide and methyltrioxorhenium

The thermodynamic of the known and very effective catalytic system, hydrogen peroxide (H2O2) and methyltrioxorhenium (MTO) is studied in different solvents using UV-Visible spectroscopic method. The thermodynamic parameters (ΔG, ΔH and ΔS) for two equilibrium reactions, MTO + H2O2 ⇌ A + H2O and A + H2O2 ⇌ B.H2O (A, [MeRe(O)2(O2)]; B.H2O, [MeRe(OH2)(O)(O2)2]), are determined. The obtained free e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 25  شماره 

صفحات  -

تاریخ انتشار 2003